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Rasta

Motivation

Design cipher with low ANDdepth and few ANDs per bit

Remove huge ciphertext expansion in applications of FHE

In general interesting problem, e.g. for cheap side-channel
attack countermeasures
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Rasta

Comparison to Other Designs
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Fig. 1: Comparison with respect to the two most important metrics. All are for
a security level of 128 bits. The di↵erent points for Kreyvium are derived from
varying the number of output bits generated per initialization. For LowMCv2
the given round formula is used explore various trade-o↵s possible in the design
space.
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Fig. 2: Comparison with respect to the two most important metrics. All are for
a security level of 128 bits. The di↵erent points for Kreyvium are derived from
varying the number of output bits generated per initialization. For LowMCv2
the given round formula is used explore various trade-o↵s possible in the design
space.
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Fig. 3: Comparison with respect to the two most important metrics. All are for
a security level of 128 bits. The di↵erent points for Kreyvium are derived from
varying the number of output bits generated per initialization. For LowMCv2
the given round formula is used explore various trade-o↵s possible in the design
space.
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Fig. 4: Comparison with respect to the two most important metrics. All are for
a security level of 128 bits. The di↵erent points for Kreyvium are derived from
varying the number of output bits generated per initialization. For LowMCv2
the given round formula is used explore various trade-o↵s possible in the design
space.
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A Attacks based on linear approximations – details

In order to get the results presented in Sect. ?? - “Bounds for 2 S-Layers (Depth
2)”, we exploit the probability that a certain fixed linear characteristic over a
randomly generated matrix M1 exists. Here we give the complete proof of how
to compute this probability, which is equal to (2n � 1)�1.

Let b, c 2 Fn
2 \ 0 fixed but arbitrary. In this section, we show how to compute

the number of invertible matrix A 2 Fn⇥n
2 such that

A · b = c. (1)

Before to start, we analyze the case b and/or c completely equal to 0. Obviously,
if b = (0, . . . , 0), then the previous equation does not have any solution A if c 6=
(0, . . . , 0), while any matrix A satisfy it if c = (0, . . . , 0). Similar considerations
hold for c = (0, . . . , 0).

For the following, we denote by bz for 0  z < n the z-bit of b, and by Ar,c

the bit in row r and in column c of A. Given a vector x 2 Fn
2 , we denote by

hw(x) its Hamming Weight, that is hw(x) =
Pn�1

i=0 xi.
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Rasta

Rasta

Stream cipher based on public permutation
Different permutations to generate key stream

Each permutation evaluated once

Choice of permutation depends solely on public parameters

High-level idea to make relevant computations of the cipher
independent of the key was first propsed by Méaux,
Journault, Standaert and Carlet at Eurocrypt 2016.

key stream

PN,1

K

PN,2

K

· · ·
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Rasta

Rasta

K A0,N,i A1,N,i Ar ,N,iS S S· · · � KN,i

Seed PRNG with public values
“Randomly” generate invertible matrix

“Randomly” generate round constant

PRNG does not influence relevant AND metric
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Rasta

Design Rationale

Changing affine layers against
Differential and impossible differential attacks

Cube and higher-order differential attacks

Integral attacks

Wide permutation and secret key � security level against
Attacks targeting polynomial system of equations

Attacks based on linear approximations

MitM attacks

Huge security margin despite very few rounds
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Rasta

Instances of Rasta, derived blocksizes

Security level Rounds

2 3 4 5 6

80-bit 221.2 212 327 327 219
128-bit 233.2 218 1 877 525 351
256-bit 265.2 234 218.8 3 545 703
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Rasta

Instances of Rasta

Block sizes depend on bounds on
The existence of good linear approximations

Total number of different monomials

Block sizes are not based on attacks
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Rasta

Cryptanalysis

SAT solver
Exhaustive search performs better for more than 1 round

Various dedicated attacks
For various versions of SAS

Variants of 2-round Rasta where block size = security level

Grobner bases and related algebraic attacks
Even no improvement for variants of 2-round Rasta where
block size = security level

Experiments with toy versions
No no-random behaviour
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Rasta

Agrasta: More agressive parameters

Security level Rounds Block size

80-bit 4 81
128-bit 4 129
256-bit 5 257

Closer to what we can attack, still large security margin
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Rasta

Benchmarking of FHE use-case

Implemented Rasta using Helib

Compared with
LowMC

Trivium/Kreyvium

Flip

For Trivium, Kreyvium and FLIP no public Helib
implementation available
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Rasta

Benchmarking 80-bit Cipher Security

Cipher n r ttotal BGV slots BGV lev. BGV sec.

LowMC v1 128 11 2011.9 720 20 74.05
H. t. LowMC v2 256 12 1721.3 600 21 62.83
Trivium 57 12 ⇠1560.0 504 – –
Trivium 136 13 ⇠4050.0 682 – –
FLIP 1 4 ⇠3.5 600 12 –
Rasta 327 4 397.8 224 12 89.57
Rasta 327 4 609.6 600 13 62.83
Rasta 327 5 766.7 600 14 62.83
Rasta 219 6 610.6 600 14 62.83
Agrasta 81 4 98.9 600 12 81.41
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Rasta

Benchmarking 128-bit Cipher Security

Cipher n r ttotal BGV slots BGV lev. BGV sec.

LowMC v1 256 12 3785.2 480 21 106.31
Kreyvium 12 42 ⇠1760.0 504 – –
Kreyvium 13 124 ⇠4430.0 682 – –
FLIP 1 4 ⇠39.0 720 13 –
Rasta 525 5 912.1 682 14 90.39
Rasta 351 6 2018.6 720 15 110.74
Agrasta 129 4 217.4 682 12 127.50
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Rasta

Benchmarking 256-bit Cipher Security

Cipher n r ttotal BGV slots BGV lev. BGV sec.

LowMCv2 Too big to run
Kreyvium Not specified for this security level
FLIP Not specified for this security level
Rasta 703 6 5543.2 720 16 89.93
Agrasta 257 5 1763.8 1800 15 210.68
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Rasta

Conclusion

New interesting design approach

Even conservative versions competitive in benchmark

Huge gap between known attacks and bounds
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Overview

Digital Signatures in a post-quantum world

• RSA and DLOG based schemes insecure

New schemes

• based on new structured hardness assumptions (lattices,
codes, isogenies, etc.)

• based on symmetric primitives: Hash-based signatures

Other alternatives only relying on symmetric primitives?
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High-level View

Recent years progress in two areas

• Symmetric-key primitives with few multiplications
• Practical ZK-Proof systems over general circuits

New signature schemes based on these advances
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Digital Signatures

  

Existential Unforgeability under Chosen-Message Attacks

• Adversary may see signatures on arbitrary messages
• Still intractable to output signature for new message �



⌃-Protocols

Three move protocol:

BP

Prover Veri�er

commitment a to randomness
challenge e

response z

• Important that e unpredictable before sending a

• aka (Interactive) Honest-Veri�er Zero-Knowledge Proofs

Non-interactive variant via Fiat-Shamir [FS��] transform
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Digital Signatures from ⌃-Protocols

Well known methodology

One-way function fk : D ! R with k 2 K

• sk  R K

• y  fsk (x), pk  (x , y)

Signature

• ⌃-protocol to prove knowledge of sk so that y = fsk (x)

• Use Fiat-Shamir transform to bind message to proof
e H(akm)
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ZKB�� [GMO��]

E�cient ⌃-protocols for arithmetic circuits

• generalization, simpli�cation, � implementation of
“MPC-in-the-head” [IKOS��]

Idea
�. (�,�)-decompose circuit into three shares
�. Revealing � parts reveals no information
�. Evaluate decomposed circuit per share
�. Commit to each evaluation
�. Challenger requests to open � of �
�. Veri�es consistency

E�ciency
• Heavily depends on �multiplications

x

Share

w0
2w0

1 w0
3

f 1
1 f 1

2 f 1
3

w1
1 w1

2 w1
3

f 2
1 f 2

2 f 2
3
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1 wN

2 wN
3
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ZKB��

Improved version of ZKB��:

• Remove redundant information from views
• Remove redundant checks
• Proof size reduction to less than half the size
• But without extra computational cost
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L��MC [ARS+��, ARS+��]

Substitution-permutation-network design

• Very lightweight S-box with one AND gate per bit
• S-box layer is only partial
• Very expensive a�ne layer with n/2 XOR gates per bit.
• Allows selection of instances minimizing, e.g.

• ANDdepth,
• number of ANDs, or
• ANDs / bit

Blocksize S-boxes Keysize Data ANDdepth � of ANDs ANDs/bit
n m k d r

256 2 256 256 232 1392 5.44
512 66 256 256 18 3564 6.96

1024 10 256 256 103 3090 3.02

Table �: L��MC parameters for ���-bit PQ-security
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Fish

Fish:

• Turn ZKB�� and OWF into signature scheme
• via Fiat-Shamir Transform
• Instantiate OWF with L��MC v�
• ) EUF-CMA security in the ROM
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Picnic

Picnic:

• Turn ZKB�� and OWF into signature scheme
• via Unruh Transform
• Instantiate OWF with L��MC v�
• ) EUF-CMA security in the QROM

Unruh Transform incurs overhead in signature size

• But careful tweaking reduces overhead to factor 1.6
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Signature Size

• Recall: OWF fk : D ! R, sk  R K , pk  (x , fsk (x))

• Security parameter 

OWF represented by arithmetic circuit with

• ring size �

• multiplication count a

Signature size: |�| = c1 + c2 · (c3 + � · a) where ci are
polynomial in 
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OWF with few multiplications?

Build OWF from

name security � · a
AES ��� 5440 F2 approach
AES ��� 4000? F24 approach
AES ��� 7616 F2 approach
SHA-� ��� > 25000
SHA-� ��� 38400
Noekeon ��� 2048
Trivium �� 1536
PRINCE 1920
Fantomas ��� 2112
L��MC v� ��� < 800
L��MC v� ��� < 1400
Kreyvium ��� 1536
FLIP ��� > 100000
MIMC ��� 10337
MIMC ��� 41349
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Signature Size Comparison

name security |�|
AES ��� 339998
AES ��� 473149
SHA-� ��� 1331629
SHA-� ��� 2158573
L��MC v� ��� 108013
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Example of Exploration of Variation of L��MC Instances

Figure �: Measurements for instance selection (���-bit PQ-security).
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Comparison with other recent proposals

Scheme Gen Sign Verify |sk | |pk | |�| M
Fish-��-�� 0.01 29.73 17.46 32/64 116K ROM
Picnic-��-�� 0.01 31.31 16.30 32/64 191K QROM
MQ �pass 1.0 7.2 5.0 32 74 40K ROM
SPHINCS-��� 0.8 1.0 0.6 1K 1K 40K SM
BLISS-I 44 0.1 0.1 2K 7K 5.6K ROM
Ring-TESLA 17K 0.1 0.1 12K 8K 1.5K ROM
TESLA-��� 49K 0.6 0.4 3.1M 4M 2.3K (Q)ROM
FS-Véron n/a n/a n/a 32 160 � 126K ROM
SIDHp��� 16 7K 5K 48 768 138K QROM

Table �: Timings (ms) and key/signature sizes (bytes)
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Conclusion

ZKB��: Improved ZK proofs for arithmetic circuits

Fish/ Picnic: Two new e�cient post-quantum signature
schemes in ROM and QROM

Applications beyond signatures: NIZK proof system for
arithmetic circuits in post-quantum setting
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Outlook and Future Work

• Alternative symmetric primitives with few multiplications
• Something new with even less multiplications than L��MC?
• ���-bit secure variant of Trivium/Kreyvium?

• More L��MC cryptanalysis
• More aggressive L��MC parameters with very low
allowable data complexity, e.g. only � or � texts.

• Analysis regarding side-channels
• Unruh Transform with constant overhead?
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Thank you.

• To appear in ACM CCS’��.
• Preprint: https://ia.cr/2017/279
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